a2 United States Patent

Ranade et al.

US009223788B2

US 9,223,788 B2
Dec. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54) FILE SYSTEM CONSISTENCY CHECK ON (56) References Cited
PART OF A FILE SYSTEM
U.S. PATENT DOCUMENTS
(75) Inventors: Dilip Madhusudan Ranade, 6.763.455 B2* 72004 Hall e 713/1
Maharashtra (IN); Kedar Shrikrishna 7,028,158 Bl* 4/2006 Beatty etal. 711/202
Patwardhan, Maharashtra (IN) 7,546,319 BL* 6/2009 Srinivasan etal.cc...c...... /1
2005/0055492 Al* 3/2005 Muthulingam et al. 711/100
s . . s 2007/0156877 Al* 7/2007 Krishnan et al. 709/223
(73) Assignee: Symantec Corporation, Mountain View, 2008/0189343 Al* 82008 Hyeretal. ... " 207205
CA (US) 2009/0006494 Al* 1/2009 Hongetal. 707/202
2009/0024813 Al* 12009 Uysal etal. 711/162
(*) Notice: Subject to any disclaimer, the term of this 2010/0185690 Al* = 7/2010 Evansetal. ... - 707/803
patent is extended or adjusted under 35 2010/0281230 Al* 11/2010 Rabiietal.cccceoeeene. 711/165
U.S.C. 154(b) by 164 days. OTHER PUBLICATIONS
. Val Henson; et al, CHUNKFS: Using divide-and-conquer to
(21) Appl. No.: 12/942,753 improve file system reliability and repair; 6 pages, 2006.
. Amit Gud, CHUNKFS: A Recovery-Driven File System Design
(22) Filed: Nov. 9, 2010 Approach, A thesis, submitted in partial fulfillment of the require-
ments for the degree, Department of Computing and Information
(65) Prior Publication Data Sciences College of Engineering, Kansas State University, Manhat-
tan, Kansas 2007, 68 pages.
US 2012/0117035 Al May 10, 2012
* cited by examiner
(51) Int.ClL Primar .
vy Examiner — Usmaan Saeed
gzgﬁ ;Zgz 888288 Assistant Examiner — Yu Zhao
GO6F 1107 (2006:01) g41) Azfiogwy, ff}e;nz, or Firm — Wilmer Cutler Pickering
GOGF 7/00 (2006.01) ale and Lorr
(52) US.CL (57) ABSTRACT
CPC oo GO6F 17/3007 (2013.01); G06F21011/30Z)511 A file system that includes multiple logical devices can be
. . . (01) subdivided into multiple containers. The containers each
(58) Field of Classification Search include respective non-overlapping sets of the logical

CPC . GO6F 3/067; GOG6F 17/30067; GO6F 9/5072;
GOG6F 11/0751; GOG6F 11/1451; GOGF 11/1456;
GOG6F 11/1464; GOGF 12/08; GOGF 12/0868;
GO6F 17/3007; GOGF 17/30312; GO6F
2212/1016; GOG6F 2212/461; GOG6F 3/0608;
GOG6F 3/0631; GOG6F 3/0641; GOGF 3/00

See application file for complete search history.

devices. An amount of memory allocated to a container is
dynamic. A set of the containers can be selected for a file
system consistency check. The file system consistency check
is performed on only the set of the containers instead of on the
entire file system.

12 Claims, 7 Drawing Sheets

1000

ASSOQCIATE A FILE WITH A CONTAINER

1002

v

1004
IF THE FILE INCREASES IN SIZE, THEN
ALLOCATE A FREE PORTION OF MEMORY ASSOCIATED
WITH THE CONTAINER TO THE FILE

Y

1006
ALLOCATE ADDITIONAL MEMORY TO THE CONTAINER
IF THE FREE PORTION IS INSUFFICIENT

v

1008

DECREASE AMOUNT OF MEMORY ALLOCATED TO THE
CONTAINER IF A MEASURE OF FREE MEMORY IN THE
CONTAINER EXCEEDS A THRESHOLD AMOUNT

U.S. Patent Dec. 29, 2015 Sheet 1 of 7 US 9,223,788 B2

118
114 138 118 120 122
PROCESSOR SYSTEM MEMORY o COMMUNICATION
MEMORY CONTROLLER CONTROLLER INTEREACE
A & é 4)
. ¥ ¥ v ¥ _
I i J J Y =
¥ ¥ ¥
142 126 130 134
o DISPLAY INPUT STORAGE
ADAPTER INTERFACE INTERFACE
& A
¥ ¥
124 198 132 133
DISPLAY e PRIMARY BACKUP
INPUT DEVICE RIMA
DEVICE - STORAGE STORAGE
DEVICE DEVICE
Fo
,dap
| DATABASES |
; |

Figure 1

US 9,223,788 B2

Sheet 2 of 7

Dec. 29, 2015

U.S. Patent

Z ainbi4

29IA3A
W02
39iA30 301A30
TN)08Z < oz
39IA3a HIANIS
o6e “ 574
OINEYA NVS
082 HHOMLIN
052
AVHYY JOVHOLS
INIOITIALN] mmm\wwmm
[:¥4
A
301A3Q _
Ao - 502
3DIA3Q
(O304 ¢

1N3ND
0%C
< . INZITO
[+r44
INZITO
orz

U.S. Patent Dec. 29, 2015 Sheet 3 of 7 US 9,223,788 B2

202
APPLICATION

/“I\

M

312
MULTI-
DEVICE FILE
SYSTEM

19
(=
o

FILE SYSTEM 310

|" ““““““““““““““““““ i
| |
VOLUME [
| MANAGER 320
| I
| |
| I
' I
| I
I I
| I
| |
— e f mmmmmmmmmmmmm —
fF—————"——— 77 i i —— - i
FIRST STORAGE SECOND STORAGE
| ARRAY 330 | ARRAY 340
I

I
I
I

332(N)
I DISK
|
L

Figure 3

U.S. Patent Dec. 29, 2015 Sheet 4 of 7 US 9,223,788 B2

- APPLIGATION REPLACEMENT
r SHEET

Y
D
312
MULT:-

DEVICE FILE
SYSTEM

FILE SYSTEM 310

| VOLUME
MANAGER 320

344
TIER 1
VOLUME

346
TIER 2
VOLUME

““““““““““] T T T
TIER 1 STORAGE TIER 2 STORAGE
ARRAY 350 ARRAY 360

Figure 4

U.S. Patent Dec. 29, 2015 Sheet 5 of 7 US 9,223,788 B2

500 CONTAINER O CONTAINER 1 CONTAINER 2
LOGICAL LOGICAL LOGICAL
DEVICE 0 DEVICE 1 DEVICE 3
LOGICAL LOGICAL
DEVICE 2 DEVICE N

Figure 5

CONTAINER 0 CONTAINER 1 CONTAINER 2
Y O M
| LOGICAL LOGICAL
|TERC DEVICE 0 DEVICE 1 :
| —— 4
e T====odo-
| LOGICAL LOGICAL
| TER T DEVICE 2 DEVICE 3 :
l\"e e = —
i
| LOGICAL
| TIER2 DEVICE 4 I
| |

Figure 6

U.S. Patent Dec. 29, 2015 Sheet 6 of 7 US 9,223,788 B2

CONTAINER 704
LOGICAL
DEVICE 0
FILE 702
LOGICAL
DEVICE 1

Figure 7

BLOCK / CONTAINER 800 \
Ty X
X

(A) (B) (©)

Figure 8

U.S. Patent

1000

Dec. 29, 2015 Sheet 7 of 7

202
ACCESS A FILE SYSTEM THAT INCLUDES MULTIPLE
LOGICAL DEVICES

Y

204
SUBDIVIDE THE LOGICAL DEVICES INTO A NUMBER OF
VARIABLE-SIZED CONTAINERS

Y

206
SELECT A SET OF THE CONTAINERS FOR A PARTIAL
FILE SYSTEM CONSISTENCY CHECK

v

208
PERFORM THE PARTIAL FILE SYSTEM CONSISTENCY
CHECK ON ONLY THE SELECTED SET OF CONTAINERS

Figure 9

1002
ASSOCIATE A FILE WITH A CONTAINER

v

1004
IF THE FILE INCREASES IN SIZE, THEN
ALLOCATE A FREE PORTION OF MEMORY ASSOCIATED
WITH THE CONTAINER TO THE FILE

v

1006
ALLOCATE ADDITIONAL MEMORY TO THE CONTAINER
IF THE FREE PORTION IS INSUFFICIENT

v

1008
DECREASE AMOUNT OF MEMORY ALLOCATED TO THE
CONTAINER IF A MEASURE OF FREE MEMORY IN THE
CONTAINER EXCEEDS A THRESHOLD AMOUNT

Figure 10

US 9,223,788 B2

US 9,223,788 B2

1
FILE SYSTEM CONSISTENCY CHECK ON
PART OF A FILE SYSTEM

BACKGROUND

Databases are susceptible to corruption/inconsistencies
while they are in use. Inconsistencies can be introduced by
operator error, hardware failure, a problem with controller
firmware, etc.

A file system contains on-disk metadata structures that
allow the file system driver to expose a multi-file, multi-
directory abstraction on top of a set of storage blocks. If any
of this metadata becomes corrupt, a system utility called
FSCK (file system consistency check, and repair) can be run
to remove file system inconsistencies. A tool commonly used
to identify and fix corruptions of NTFS (New Technology
File Systems) is referred to as “chkdsk.”

A file system consistency check can be run in several
phases; one time-consuming phase tallies blocks allocated to
files against blocks on a free block list. Errors such as one
block found allocated to more than one file (duplicate alloca-
tion), and blocks that are neither allocated nor on the free
block list (lost blocks), are fixed in this phase. Because run-
ning a file system consistency check to repair a file system
that is mounted for read/write operations can potentially
cause severe data corruption/loss, the file system is normally
checked while unmounted, mounted read-only, or with the
system in a special maintenance mode that limits the risk of
such damage. Thus, the file system may be unavailable while
afile system consistency check is performed—the file system
is not accessible during execution of a file system consistency
check. However, with the increasing size of very large file
systems (hundreds of terabytes or even petabytes in size), the
time to run a file system consistency check has lengthened to
days or even weeks. Because most such large systems also
require availability 24 hours a day, seven days a week, the
length of time needed to run a file system consistency check
has become a real issue.

In summary, a problem with processes such as FSCK is that
they can take a relatively long time to run. While FSCK is run,
the file system may be taken offline, which makes it inacces-
sible to other system components and processes that rely onit.

SUMMARY

According to embodiments of the present disclosure, a file
system includes multiple logical devices that are subdivided
into multiple containers. The logical devices may be, for
example, volumes managed by a volume manager of the file
system, or devices identified by LUNs (logical unit numbers).
The containers each include a respective non-overlapping set
of'the logical devices. That is, each of the containers includes
one or more of the logical devices, and each of the logical
devices is associated with a single one of the containers. The
amount of memory allocated to each container is dynamic. A
set (one or more) of the containers can be selected for a file
system consistency check. The file system consistency check
is performed on only the set of the selected containers instead
of on the entire file system.

In one embodiment, a file is associated with a particular
container. Ifthe file subsequently increases in size, then a free
portion of memory associated with that container can be
allocated to the file. If the free portion is insufficient, then
additional memory can be allocated to the container. Also, the
amount of memory allocated to the container can be reduced
if a measure of free memory in the container exceeds a thresh-
old amount.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one embodiment, inodes associated with each of the
containers are identified. In such an embodiment, the file
system consistency check can be constrained to a set of the
inodes and hence to a set of containers.

In one embodiment, the set of containers selected for the
file system consistency check is offline and inaccessible to
applications, but the remainder of the containers in the file
system is online and accessible to applications during the file
system consistency check.

In one embodiment, the file system is a multi-tier file
system. In such an embodiment, a container can include a
logical device that is in one tier and a logical device that is in
another tier.

In summary, according to embodiments of the disclosure, a
large file system can be divided into several smaller entities
(containers) such that each container can be checked and
repaired independently, which leads to much faster file sys-
tem consistency checks and repairs. Only a portion of the file
system (specifically, the container being checked) may need
to be taken offline during a file system consistency check,
leaving the remainder of the file system accessible to other
system components and processes.

These and other objects and advantages of the various
embodiments of the present disclosure will be recognized by
those of ordinary skill in the art after reading the following
detailed description of the embodiments that are illustrated in
the various drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and form a part of this specification and in which like numer-
als depict like elements, illustrate embodiments of the present
disclosure and, together with the description, serve to explain
the principles of the disclosure.

FIG. 1 is a block diagram of an example of a computer
system upon which embodiments of the present disclosure
can be implemented.

FIG. 2 is a block diagram of an example of a network
architecture capable of implementing embodiments of the
present disclosure.

FIG. 3 is ablock diagram of an example of a storage system
capable of implementing embodiments of the present disclo-
sure.

FIG. 4 is a block diagram of an example of a multi-tier
storage system upon which embodiments of the present dis-
closure may be implemented.

FIG. 5 is a block diagram illustrating a file system that is
subdivided into containers according to an embodiment of the
present disclosure.

FIG. 6 is a block diagram illustrating a multi-tier file sys-
tem that is subdivided into containers according to an
embodiment of the present disclosure.

FIG. 7 is a block diagram illustrating the mapping of a file
to a container according to embodiments of the present dis-
closure.

FIG. 8 is a representation of data blocks in a data structure
(e.g., a container or a logical device) according to embodi-
ments of the present disclosure.

FIG. 9 is a flowchart of a computer-implemented process
for performing file system consistency checks according to
embodiments of the disclosure.

FIG. 10 is a flowchart of a computer-implemented process
for managing containers according to embodiments of the
disclosure.

DETAILED DESCRIPTION

Reference will now be made in detail to the various
embodiments of the present disclosure, examples of which

US 9,223,788 B2

3

are illustrated in the accompanying drawings. While
described in conjunction with these embodiments, it will be
understood that they are not intended to limit the disclosure to
these embodiments. On the contrary, the disclosure is
intended to cover alternatives, modifications and equivalents,
which may be included within the spirit and scope of the
disclosure as defined by the appended claims. Furthermore, in
the following detailed description of the present disclosure,
numerous specific details are set forth in order to provide a
thorough understanding of the present disclosure. However, it
will be understood that the present disclosure may be prac-
ticed without these specific details. In other instances, well-
known methods, procedures, components, and circuits have
not been described in detail so as not to unnecessarily obscure
aspects of the present disclosure.

Some portions of the detailed descriptions that follow are
presented in terms of procedures, logic blocks, processing,
and other symbolic representations of operations on data bits
within a computer memory. These descriptions and represen-
tations are the means used by those skilled in the data pro-
cessing arts to most effectively convey the substance of their
work to others skilled in the art. In the present application, a
procedure, logic block, process, or the like, is conceived to be
a self-consistent sequence of steps or instructions leading to a
desired result. The steps are those utilizing physical manipu-
lations of physical quantities. Usually, although not necessar-
ily, these quantities take the form of electrical or magnetic
signals capable of being stored, transferred, combined, com-
pared, and otherwise manipulated in a computer system. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as transactions, bits,
values, elements, symbols, characters, samples, pixels, or the
like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated that
throughout the present disclosure, discussions utilizing terms
such as “accessing,” “subdividing,” “selecting,” “complet-
ing,” “associating,” “allocating,” “reducing,” “increasing,”
“identifying,” “constraining,” “validating,” or the like, refer
to actions and processes (e.g., flowcharts 900 and 1000 of
FIGS. 9 and 10, respectively) of a computer system or similar
electronic computing device or processor (e.g., system 110 of
FIG. 1). The computer system or similar electronic comput-
ing device manipulates and transforms data represented as
physical (electronic) quantities within the computer system
memories, registers or other such information storage, trans-
mission or display devices.

Embodiments described herein may be discussed in the
general context of computer-executable instructions residing
on some form of computer-readable storage medium, such as
program modules, executed by one or more computers or
other devices. By way of example, and not limitation, com-
puter-readable storage media may comprise non-transitory
computer-readable storage media and communication media;
non-transitory computer-readable media include all com-
puter-readable media except for a transitory, propagating sig-
nal. Generally, program modules include routines, programs,
objects, components, data structures, etc., that perform par-
ticular tasks or implement particular abstract data types. The
functionality of the program modules may be combined or
distributed as desired in various embodiments.

Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information such as

2

10

15

20

25

30

35

40

45

50

55

60

65

4

computer-readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, random access memory (RAM), read only
memory (ROM), electrically erasable programmable ROM
(EEPROM), flash memory or other memory technology,
compact disk ROM (CD-ROM), digital versatile disks
(DVDs) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to store the
desired information and that can accessed to retrieve that
information.

Communication media can embody computer-executable
instructions, data structures, and program modules, and
includes any information delivery media. By way of example,
and not limitation, communication media includes wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, radio frequency (RF),
infrared and other wireless media. Combinations of any of the
above can also be included within the scope of computer-
readable media.

According to embodiments of the disclosure, a large file
system is divided into several smaller entities such that each
entity can be checked and repaired independently, which
leads to much faster file system consistency checks and
repairs. Generally speaking, a divide-and-conquer approach
is used to reduce the time needed to run a file system consis-
tency check.

More specifically, in one embodiment, the total storage
space is subdivided into several variable-sized entities
referred to herein as “containers.” Blocks of one container are
allocated to an exclusive set of files. That is, any one file is
allocated blocks from at most one container. The maximum
number of files that can be associated with one container is
limited. A file system consistency check can then be executed
on one container at a time, or on a group of containers, instead
of the entire file system.

In essence, in a file system that supports multiple volumes,
a larger number of small size volumes are defined instead of
a smaller number of large size volumes. One or more of the
smaller volumes form a container. The respective sizes of
smaller volumes and hence the containers are dynamic—each
can grow or shrink online. These dynamic-sized containers
can also be implemented within the file system driver.

Blocks allocated to a file belonging to a container are
allocated from the same container. If the container runs out of
free blocks, the size of the volume is grown dynamically. That
is, additional blocks can be allocated to a container as needed.

On the other hand, if a container accumulates too many free
blocks (dueto file truncation, etc.), the free blocks towards the
end of the volumes can be reorganized and deleted, and then
the sizes of the volumes can be dynamically reduced. This
addresses the problem of defragmentation that can arise due
to partitioning the file system space into multiple containers.

A container may be limited to a single logical device or it
may include multiple logical devices. A logical device may be
a virtual disk or volume assigned by a volume manager, or a
LUN (logic unit number) assigned by a disk array, and
appears to the file management system as a physical disk
partition device. Device virtualization can also be imple-
mented within the file system itself, as an internal virtualiza-
tion module. In one embodiment, a block map or some other
type of data structure used by the file system can include a
descriptor (a field) that identifies the logical device(s) that
store each container. Alternatively, each inode may include an
identifier that identifies the logical device(s) that store each
container.

US 9,223,788 B2

5

In one embodiment, each container is associated with its
own set of the following metadata structures: (a) a free block
list; (b) an inode list or inode array; and (c) other auxiliary
structures that may be required for the particular file system.
There may be an upper limit N for the number of files that can
be placed in one container. When a new file is to be created, it
is created in a container having less than N files.

When corruption of metadata belonging to a particular
container is detected or suspected, then that container only
may be marked for a file system consistency check. Thus,
instead of running a file system consistency check on the
whole file system, only the single container that was marked
for a file system consistency check is checked and repaired.
Accordingly, a file system consistency check runs signifi-
cantly faster because a smaller number of files and blocks are
checked.

A file system consistency check can be run online, without
stopping the file system, by implementing means to “freeze”
only the container or containers that are being checked and
repaired. Consequently, only applications that need to access
files within the frozen container will be blocked while a file
system consistency check is being run.

In one embodiment, a “partial file system consistency
check” utility is specified to check and repair a container of
interest. The partial file system consistency checks and reads
a list of inodes, reads the block map associated with each of
the inodes, generates an inode list per container, and con-
strains the file system consistency check to the inodes asso-
ciated with the container of interest.

Embodiments according to the present disclosure can be
used in tiered storage systems, in which performance is better
but the cost is greater at higher tiers while at lower tiers the
cost is reduced but so is performance, and in which containers
may span multiple tiers.

FIG. 1 is a block diagram of an example of a computing
system 110 capable of implementing embodiments of the
present disclosure. Computing system 110 broadly represents
any single or multi-processor computing device or system
capable of executing computer-readable instructions.
Examples of computing system 110 include, without limita-
tion, workstations, laptops, client-side terminals, servers, dis-
tributed computing systems, handheld devices, or any other
computing system or device. In its most basic configuration,
computing system 110 may include at least one processor 114
and a system memory 116.

Processor 114 generally represents any type or form of
processing unit capable of processing data or interpreting and
executing instructions. In certain embodiments, processor
114 may receive instructions from a software application or
module. These instructions may cause processor 114 to per-
form the functions of one or more of the example embodi-
ments described and/or illustrated herein.

System memory 116 generally represents any type or form
of'volatile or nonvolatile storage device or medium capable of
storing data and/or other computer-readable instructions.
Examples of system memory 116 include, without limitation,
RAM, ROM, flash memory, or any other suitable memory
device. Although not required, in certain embodiments com-
puting system 110 may include both a volatile memory unit
(such as, for example, system memory 116) and a nonvolatile
storage device (such as, for example, primary storage device
132).

Computing system 110 may also include one or more com-
ponents or elements in addition to processor 114 and system
memory 116. For example, in the embodiment of FIG. 1,
computing system 110 includes a memory controller 118, an
input/output (I/O) controller 120, and a communication inter-

30

35

40

45

50

55

60

65

6

face 122, each of which may be interconnected via a commu-
nication infrastructure 112. Communication infrastructure
112 generally represents any type or form of infrastructure
capable of facilitating communication between one or more
components of a computing device. Examples of communi-
cation infrastructure 112 include, without limitation, a com-
munication bus (such as an Industry Standard Architecture
(ISA), Peripheral Component Interconnect (PCI), PCI
Express (PCle), or similar bus) and a network.

Memory controller 118 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 110. For example, memory controller 118
may control communication between processor 114, system
memory 116, and I/O controller 120 via communication
infrastructure 112.

1/0O controller 120 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, [/O
controller 120 may control or facilitate transfer of data
between one or more elements of computing system 110,
such as processor 114, system memory 116, communication
interface 122, display adapter 126, input interface 130, and
storage interface 134.

Communication interface 122 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between example computing system
110 and one or more additional devices. For example, com-
munication interface 122 may {facilitate communication
between computing system 110 and a private or public net-
work including additional computing systems. Examples of
communication interface 122 include, without limitation, a
wired network interface (such as a network interface card), a
wireless network interface (such as a wireless network inter-
face card), a modem, and any other suitable interface. In one
embodiment, communication interface 122 provides a direct
connection to a remote server via a direct link to a network,
such as the Internet. Communication interface 122 may also
indirectly provide such a connection through any other suit-
able connection.

Communication interface 122 may also represent a host
adapter configured to facilitate communication between com-
puting system 110 and one or more additional network or
storage devices via an external bus or communications chan-
nel. Examples of host adapters include, without limitation,
Small Computer System Interface (SCSI) host adapters, Uni-
versal Serial Bus (USB) host adapters, IEEE (Institute of
Electrical and FElectronics Engineers) 1394 host adapters,
Serial Advanced Technology Attachment (SATA) and Exter-
nal SATA (eSATA) host adapters, Advanced Technology
Attachment (ATA) and Parallel ATA (PATA) host adapters,
Fibre Channel interface adapters, Ethernet adapters, or the
like. Communication interface 122 may also allow comput-
ing system 110 to engage in distributed or remote computing.
For example, communication interface 122 may receive
instructions from a remote device or send instructions to a
remote device for execution.

As illustrated in FIG. 1, computing system 110 may also
include at least one display device 124 coupled to communi-
cation infrastructure 112 via a display adapter 126. Display
device 124 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 126. Similarly, display adapter 126 generally
represents any type or form of device configured to forward
graphics, text, and other data for display on display device
124.

US 9,223,788 B2

7

As illustrated in FIG. 1, computing system 110 may also
include at least one input device 128 coupled to communica-
tion infrastructure 112 via an input interface 130. Input device
128 generally represents any type or form of input device
capable of providing input, either computer- or human-gen-
erated, to computing system 110. Examples of input device
128 include, without limitation, a keyboard, a pointing
device, a speech recognition device, or any other input device.

As illustrated in FIG. 1, computing system 110 may also
include a primary storage device 132 and a backup storage
device 133 coupled to communication infrastructure 112 via
a storage interface 134. Storage devices 132 and 133 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions. For example, storage devices 132 and 133 may
be amagnetic disk drive (e.g., a so-called hard drive), a floppy
disk drive, a magnetic tape drive, an optical disk drive, a flash
drive, or the like. Storage interface 134 generally represents
any type or form of interface or device for transferring data
between storage devices 132 and 133 and other components
of computing system 110.

In one example, databases 140 may be stored in primary
storage device 132. Databases 140 may represent portions of
a single database or computing device or it may represent
multiple databases or computing devices. For example, data-
bases 140 may represent (be stored on) a portion of comput-
ing system 110 and/or portions of example network architec-
ture 200 in FIG. 2 (below). Alternatively, databases 140 may
represent (be stored on) one or more physically separate
devices capable of being accessed by a computing device,
such as computing system 110 and/or portions of network
architecture 200.

Continuing with reference to FIG. 1, storage devices 132
and 133 may be configured to read from and/or write to a
removable storage unit configured to store computer soft-
ware, data, or other computer-readable information.
Examples of suitable removable storage units include, with-
out limitation, a floppy disk, a magnetic tape, an optical disk,
a flash memory device, or the like. Storage devices 132 and
133 may also include other similar structures or devices for
allowing computer software, data, or other computer-read-
able instructions to be loaded into computing system 110. For
example, storage devices 132 and 133 may be configured to
read and write software, data, or other computer-readable
information. Storage devices 132 and 133 may also be a part
of computing system 110 or may be separate devices accessed
through other interface systems.

Many other devices or subsystems may be connected to
computing system 110. Conversely, all of the components
and devices illustrated in FIG. 1 need not be present to prac-
tice the embodiments described herein. The devices and sub-
systems referenced above may also be interconnected in dif-
ferent ways from that shown in FIG. 1. Computing system
110 may also employ any number of software, firmware,
and/or hardware configurations. For example, the example
embodiments disclosed herein may be encoded as a computer
program (also referred to as computer software, software
applications, computer-readable instructions, or computer
control logic) on a computer-readable medium.

The computer-readable medium containing the computer
program may be loaded into computing system 110. All or a
portion of the computer program stored on the computer-
readable medium may then be stored in system memory 116
and/or various portions of storage devices 132 and 133. When
executed by processor 114, a computer program loaded into
computing system 110 may cause processor 114 to perform
and/or be a means for performing the functions of the

20

25

40

45

55

8

example embodiments described and/or illustrated herein.
Additionally or alternatively, the example embodiments
described and/or illustrated herein may be implemented in
firmware and/or hardware.

FIG. 2 is a block diagram of an example of a network
architecture 200 in which client systems 210, 220, and 230
and servers 240 and 245 may be coupled to a network 250.
Client systems 210, 220, and 230 generally represent any type
or form of computing device or system, such as computing
system 110 of FIG. 1.

Similarly, servers 240 and 245 generally represent com-
puting devices or systems, such as application servers or
database servers, configured to provide various database ser-
vices and/or run certain software applications. Network 250
generally represents any telecommunication or computer net-
work including, for example, an intranet, a wide area network
(WAN), a local area network (LAN), a personal area network
(PAN), or the Internet.

As illustrated in FIG. 2, one or more storage devices 260
(1)-(L) may be directly attached to server 240. Similarly, one
or more storage devices 270(1)-(N) may be directly attached
to server 245. Storage devices 260(1)-(L.) and storage devices
270(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. Storage devices 260(1)-(L.) and
storage devices 270(1)-(N) may represent network-attached
storage (NAS) devices configured to communicate with serv-
ers 240 and 245 using various protocols, such as Network File
System (NFS), Server Message Block (SMB), or Common
Internet File System (CIFS).

Servers 240 and 245 may also be connected to a storage
area network (SAN) fabric 280. SAN fabric 280 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between storage
devices. SAN fabric 280 may facilitate communication
between servers 240 and 245 and storage devices 290(1)-(M)
and/or an intelligent storage array 295. SAN fabric 280 may
also facilitate, via network 250 and servers 240 and 245,
communication between client systems 210, 220, and 230
and storage devices 290(1)-(M) and/or intelligent storage
array 295 in such a manner that devices 290(1)-(M) and array
295 appear as locally attached devices to client systems 210,
220, and 230. As with storage devices 260(1)-(L) and storage
devices 270(1)-(N), storage devices 290(1)-(M) and intelli-
gent storage array 295 generally represent any type or form of
storage device or medium capable of storing data and/or other
computer-readable instructions.

With reference to computing system 110 of FIG. 1, a com-
munication interface, such as communication interface 122,
may be used to provide connectivity between each client
system 210, 220, and 230 and network 250. Client systems
210,220, and 230 may be able to access information on server
240 or 245 using, for example, a Web browser or other client
software. Such software may allow client systems 210, 220,
and 230 to access data hosted by server 240, server 245,
storage devices 260(1)-(L), storage devices 270(1)-(N), stor-
age devices 290(1)-(M), or intelligent storage array 295.
Although FIG. 2 depicts the use of a network (such as the
Internet) for exchanging data, the embodiments described
herein are not limited to the Internet or any particular net-
work-based environment.

Returning to FIG. 2, in one embodiment, all or a portion of
one or more of the example embodiments disclosed herein are
encoded as a computer program and loaded onto and executed
by server 240, server 245, storage devices 260(1)-(L), storage
devices 270(1)-(N), storage devices 290(1)-(M), intelligent
storage array 295, or any combination thereof. All or a portion

US 9,223,788 B2

9

of one or more of the example embodiments disclosed herein
may also be encoded as a computer program, stored in server
240, run by server 245, and distributed to client systems 210,
220, and 230 over network 250.

FIG. 3 is ablock diagram of an example of a storage system
300 upon which embodiments of the present disclosure may
be implemented. System 300 may include an application 302
in communication with a file system 310. File system 310
may include a multi-device file system 312 for multi-device
storage. Multi-device storage generally refers to the use of
different virtual or physical storage devices that provide dif-
ferentiated storage for computing systems.

Storage system 300 can support multi-volume file systems
through multi-device file system 312 and can provide auto-
matic policy-based placement of portions (e.g., extents or
blocks) of files within file system 310. A multi-volume file
system may include file systems that occupy two or more
virtual storage volumes. A multi-volume file system may
present a single name space, making the existence of multiple
volumes transparent to users and applications while main-
taining awareness of each volume’s identity, making it pos-
sible to control the locations at which portions of files are
stored. In one embodiment, all files in multi-volume file sys-
tem may be part of the same name space and are accessed and
manipulated as though they occupy a single volume.

System 300 may also include a volume manager 320. Vol-
ume manager 320 may implement software-based virtualiza-
tion for facilitating multi-device storage in the form of virtual
volumes configured from multiple hardware devices. Volume
manager 320 may include a volume set 322. Volume set 322
may be divided into a first volume 324 and a second volume
326. For example, first volume 324 may include a first storage
array 330 (e.g., disk 332(1) through disk 332(N)). Similarly,
second volume 326 may include a second storage array 340
(e.g., disk 342(1) through disk 342 (N)).

Volume set 322 may be configured in a variety of manners.
For example, first volume 324 and/or second volume 326 may
be configured from enterprise disk array logical unit number
units (LUNs), mid-range disk array [.LUNs, and/or disks con-
nected directly to their host systems. First volume 324 and/or
second volume 326 may also represent more complex con-
figurations, such as mirrored volumes configured from RAID
(Redundant Array of Independent Disks) LUNs presented by
two disk arrays.

FIG. 4 is a block diagram of an example of a multi-tier
storage system 301 upon which embodiments of the present
disclosure may be implemented. In this embodiment, file
system 310 includes a multi-device file system 312 for multi-
tier storage. File system 310 may also be referred to as
dynamic storage. Multi-tier storage generally refers to the use
of virtual or physical storage devices with different charac-
teristics to provide differentiated storage for computing sys-
tems. Each tier may be ranked based on those characteristics.
For example, storage devices in a multi-device file system
may have different [/O performance, availability, and/or cost
characteristics and may be ranked accordingly. In other
words, higher ranked tiers may result in higher performance
at a higher cost/price, and lower ranked tiers may result in
lower performance at a reduced cost/price. Storage system
301 can also support multi-volume file systems through
multi-device file system 312 and can provide automatic
policy-based placement of portions (e.g., extents or blocks) of
files within file system 310.

In the FIG. 4 embodiment, volume manager 320 may
implement software-based virtualization for facilitating
multi-tier storage in the form of virtual volumes configured
from multiple hardware devices. Volume set 322 may be

25

30

35

40

45

50

55

60

65

10

divided into a tier 1 volume 344 and a tier 2 volume 346. For
example, tier 1 volume 344 may include tier 1 storage array
350 (e.g., disk 352(1) through disk 352(N)). Similarly, tier 2
volume 346 may include a tier 2 storage array 360 (e.g., disk
362(1) through disk 362 (N)). Tier 1 volume 344 and/or tier 2
volume 346 may be configured from enterprise disk array
LUNs, mid-range disk array LUNs, and/or disks connected
directly to their host systems. Tier 1 volume 344 and/or tier 2
volume 346 may also represent more complex configurations,
such as mirrored volumes configured from RAID (Redundant
Array of Independent Disks)-5 LUNSs presented by two disk
arrays.

FIG. 5 is a block diagram illustrating a file system 500 that
is subdivided into containers according to an embodiment of
the present disclosure. File system 500 is analogous to file
system 300 of FIG. 3. In the example of FIG. 5, file system
500 includes three containers 0, 1, and 2; however, the inven-
tion is not so limited.

Container 0 of FIG. 5 includes a single logical device (e.g.,
avolume or LUN), container 1 includes two logical devices,
and container 2 includes N logical devices. Each container
includes a respective non-overlapping set of the logical
devices. That is, each container includes one or more of
logical devices, and each logical device is associated with a
single container.

FIG. 6 is a block diagram illustrating a file system 600 that
is subdivided into containers according to another embodi-
ment of the present disclosure. File system 600 is analogous
to file system 301 of FIG. 4. While three containers are shown
in FIG. 6, the invention is not so limited.

Container 0 of FIG. 6 includes a single logical device (e.g.,
volume or LUN) in tier 0, container 1 includes a logical
device in tier 0 and a logical device in tier 1, and container 2
includes a logical device in tier 1 and a logical device in tier 2.
In other words, a container can span multiple tiers. If each tier
is considered to be a volume unto itself, then a container can
carve out a portion of a volume/tier.

The containers of FIGS. 5 and 6 can be of different sizes
(measured in terms of memory), and the size of each con-
tainer can grow or shrink as needed. In one embodiment, a
maximum size is specified for each container. Thus, in such
an embodiment, the number of files that can be associated
with any one container is also limited. Storage allocated to
one file is restricted to belonging to the volumes that make up
one container.

Each container is associated with its own set of metadata
structures such as, but not limited to, a free block list, an inode
list or inode array, and other structures that might be typically
specified for the entire file system.

A container can be defined within a file system in various
ways. The manner in which a container is defined depends on
how the file system is implemented. In general, each con-
tainer can manage the inodes and/or data blocks that are
associated with it.

For example, a file system may be extent-based—an
“extent” is defined as one or more adjacent blocks of data
within the file system. When data blocks are allocated to a file
in an extent-based file system, the blocks are allocated as a
group, rather than one block at a time. In an extent-based
system, the blocks of data allocated for a file can be associated
with a single logical device. A descriptor associated with the
file identifies which logical device the blocks are stored in.
That descriptor, along with a physical block address or offset
within the logical device, can be used to define a container.
That is, a container can be defined as one or more descriptor
values (logical device identifiers) and offsets.

US 9,223,788 B2

11

As another example, an inode is associated with each file,
and each inode can point to the data blocks associated with a
file, or each inode can point to a block map that points to the
data blocks. A container can be defined as a selected group of
inodes; each inode is associated with a single container. Alter-
natively, a field that identifies a container can be included in
each inode. In general, when a file is created and an inode is
assigned to the file, that inode can be associated with a par-
ticular container in some way.

According to embodiments of the disclosure, each con-
tainer can be checked and repaired independently, which
leads to much faster file system consistency checks and
repairs because it is possible to check and repair only the
corrupted part of the file system instead of the entire file
system. Also, only a portion of the file system (specifically,
the container or containers being checked) may need to be
taken offline during a file system consistency check, leaving
the remainder of the file system accessible to other system
components and processes.

More specifically, instead of executing a conventional file
system consistency check, a partial file system consistency
check is specified and executed. In one embodiment, one or
more containers are identified (selected), and the partial file
system consistency check is performed only on the selected
container(s). If, for example, corruption of metadata belong-
ing to a particular container is detected, then only that con-
tainer is marked for a file system consistency check.

A container or containers can be selected for a partial file
system consistency check using one of the mechanisms iden-
tified above. For example, the file system consistency check
can be constrained to a list of inodes associated with a par-
ticular container or containers.

By checking and repairing only a selected container or
containers, a file system consistency check can be run with
the other portions of the file system online. Thus, the entire
file system does not need to be stopped. Instead, only the
container or containers that are being checked and repaired
are frozen or quiesced. Consequently, only applications that
need to access files that are associated with the frozen con-
tainer(s) will be blocked or unavailable while a partial file
system consistency check is being run.

A number of operations can be performed during a partial
file system consistency check. For example, file names asso-
ciated with the selected container(s) can be checked to make
sure that they are valid file names (e.g., they do not include
invalid characters). Inodes associated with the selected con-
tainer(s) can be checked to veritfy that they actually exist and
are files. The number of back pointers associated with those
inodes can be checked to make sure that it equals the number
ofhard links to the inodes. Other information associated with
the selected inodes can be checked. For example, the size of
the file associated with an inode can be checked to make sure
it is within reasonable bounds. The number of free inodes can
be determined. Other types of checks known in the art can be
performed on the selected inodes.

Furthermore, if inconsistencies are detected, then the
checking and repair utility can implement corrective actions.
For example, if the stored link count and the actual link count
do not match, then the stored link count can be updated with
the actual link count. If a directory entry points to an unallo-
cated inode, then the entry in the directory can be removed.
Other corrective actions known in the art can be performed
depending on the type of inconsistency that is detected.

FIG. 7 is a block diagram illustrating the mapping of a file
702 to a container 704 according to embodiments of the
present disclosure. Storage allocated to one file is restricted to
belonging to the volumes that make up one container. In the

10

15

20

25

30

35

40

45

50

55

60

65

12

example of FIG. 7, the container 704 includes two logical
devices and the file is mapped to both logical devices; how-
ever, the present invention is not so limited. A file may be
mapped to a single logical device or to multiple logical
devices, and a container may include a single logical device or
multiple logical devices. Thus, a file can span multiple logical
devices (e.g., volumes or LUNs) and still be in a single con-
tainer.

Once a file is created, subsequent writes to the file may
increase the size of the file. If more memory is needed for the
file, then the container associated with the file is identified,
and additional memory is allocated to that file within that
container. If more memory is needed for the container, then
additional memory can be allocated to that container within a
logical device associated with that container. As noted above,
a container can span multiple logical devices.

If a file is deleted, or if the file decreases in size, then the
freed up blocks remain with the container that held the file.
FIG. 8 is arepresentation of data blocks in a data structure 800
(e.g., a container or a logical device) according to embodi-
ments of the present disclosure. In (A), certain blocks (those
containing an “X”) are in use, while the other blocks are free.

In (B), the free blocks are reorganized toward the end of the
data structure 800. In this manner, the problem of defragmen-
tation, which might arise due to partitioning the file system
into containers, is addressed.

In (C), the data structure 800 is reduced in size. In one
embodiment, if the amount of free (available) memory in the
structure exceeds a defined threshold value, then the structure
is reduced in size. In the example of FIG. 8, the data structure
is reduced in size; however, as noted above, the freed blocks
can remain within the data structure (e.g., container) as shown
in (B).

FIGS. 9 and 10 are flowcharts 900 and 1000, respectively,
of computer-implemented processes for performing file sys-
tem consistency checks according to embodiments of the
disclosure. Flowcharts 900 and 1000 can be implemented as
computer-executable instructions residing on some form of
computer-readable storage medium (e.g., using computing
system 110 of FIG. 1).

Inblock 902 of FIG. 9, a file system that includes multiple
logical devices is accessed.

In block 904, the logical devices are subdivided (parti-
tioned) into a number of containers. The containers include
respective non-overlapping sets of the logical devices. That
is, each of the containers includes one or more of the logical
devices, and each of the logical devices is associated with a
single one of the containers. An amount of memory allocated
to a container is dynamic.

Inblock 906, a set of the containers is selected for a partial
file system consistency check. The set can include a single
container or multiple containers. In one embodiment, inodes
associated with the selected set of the containers are identi-
fied, and the file system consistency check is constrained to a
set of the inodes associated with the set of the containers.

In block 908, the partial file system consistency check is
performed and completed on only the selected set of the
containers instead of on the entire file system.

In block 1002 of FIG. 10, a file is associated with a con-
tainer. That is, a file is created within a container.

Inblock 1004, a free portion of memory associated with the
container is allocated to the file if the file subsequently
increases in size.

In block 1006, additional memory is allocated to the con-
tainer if the free portion is insufficient.

In block 1008, an amount of memory allocated to the
container is decreased if, for example, a measure of free

US 9,223,788 B2

13

memory in the container exceeds a threshold amount. The
measure may be, for example, the number of free data blocks.

In summary, according to embodiments of the disclosure, a
large file system can be divided into several smaller entities
(containers) such that each container can be checked and
repaired independently, which leads to much faster file sys-
tem consistency checks and repairs. Only a portion of the file
system (specifically, the container being checked) may need
to be taken offline during a file system consistency check,
leaving the remainder of the file system accessible to other
system components and processes.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered as examples because many other archi-
tectures can be implemented to achieve the same functional-
ity.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only.
For example, while the steps illustrated and/or described
herein may be shown or discussed in a particular order, these
steps do not necessarily need to be performed in the order
illustrated or discussed. The various example methods
described and/or illustrated herein may also omit one or more
of the steps described or illustrated herein or include addi-
tional steps in addition to those disclosed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional computing
systems, one or more of these example embodiments may be
distributed as a program product in a variety of forms, regard-
less of the particular type of computer-readable media used to
actually carry out the distribution. The embodiments dis-
closed herein may also be implemented using software mod-
ules that perform certain tasks. These software modules may
include script, batch, or other executable files that may be
stored on a computer-readable storage medium or in a com-
puting system. These software modules may configure acom-
puting system to perform one or more of the example embodi-
ments disclosed herein. One or more of the software modules
disclosed herein may be implemented in a cloud computing
environment. Cloud computing environments may provide
various services and applications via the Internet. These
cloud-based services (e.g., software as a service, platform as
a service, infrastructure as a service, etc.) may be accessible
through a Web browser or other remote interface. Various
functions described herein may be provided through a remote
desktop environment or any other cloud-based computing
environment.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and vari-
ous embodiments with various modifications as may be
suited to the particular use contemplated.

Embodiments according to the invention are thus
described. While the present disclosure has been described in
particular embodiments, it should be appreciated that the

10

15

20

25

30

35

40

45

50

55

65

14

invention should not be construed as limited by such embodi-
ments, but rather construed according to the below claims.

What is claimed is:
1. A non-transitory computer-readable storage medium
having computer-executable instructions for causing a com-
puter system to perform a method comprising:
accessing a file system comprising a plurality of logical
devices, wherein said file system comprises a multi-tier
file system that includes a first tier having a first hard-
ware configuration and a second tier having a second
hardware configuration different from the first hardware
configuration, the second hardware configuration hav-
ing a performance different from the first hardware con-
figuration;
subdividing said logical devices into a plurality of contain-
ers, wherein said containers comprise respective non-
overlapping sets of said logical devices, wherein an
amount of memory allocated to each container is
dynamic, wherein a first of the plurality of containers
includes alogical device entirely arranged in the first tier
and a second of'the plurality of containers includes logi-
cal devices spanning the first tier and the second tier;
wherein said logical devices comprise devices identified
by LUNs (logical unit numbers), and wherein said LUNs
are used to define members of said containers;

dynamically reducing an amount of memory allocated to
one of said containers when a measure of free memory in
said one container exceeds a threshold amount due to file
activity within said one container, wherein dynamically
reducing comprises reorganizing free blocks of said one
container to an end of said one container;

selecting a set of said containers for a file system consis-

tency check; and

performing said file system consistency check on only said

set of said containers such that a remainder of containers
within said file system are not checked, wherein said set
of containers is offline and inaccessible to applications
and said remainder of containers is online and accessible
to applications during said file system consistency
check, and wherein said file system consistency check
comprises reading and checking a list of inodes, reading
a block map associated with each inode in said list of
inodes, generating an inode list for each container within
said set of containers, and constraining said file system
consistency check to inodes associated with said set of
containers, wherein a plurality of operations are per-
formed during said file system consistency check, the
plurality of operations including a check of file names
associated with each of the containers within the set of
containers, a check of inodes associated with each of'the
containers within the set of containers, a check of back
pointers associated with the inodes, and a determination
of anumber of free inodes, and wherein one of a plurality
of corrective measures are performed when an error is
detected during one of the plurality of operations, the
corrective measure performed depending upon the error
detected.

2. The non-transitory computer-readable storage medium
of claim 1, wherein said logical devices comprise volumes
managed by a volume manager of said file system.

3. The non-transitory computer-readable storage medium
of claim 1, wherein said method further comprises:

creating a file entirely within one of the first container and

the second container, wherein the file is mapped to a
plurality of logical devices within the first container or
the second container;

US 9,223,788 B2

15

allocating, to said file, a free portion of memory associated
with the one of said first container and said second
container when said file subsequently increases in size;
and

allocating, to the one of said first container and said second

container, additional memory when said free portion is
insufficient.

4. The non-transitory computer-readable storage medium
of claim 1, wherein a first performance characteristic of said
first hardware configuration of said first tier is ranked higher
than a second performance characteristic of said second hard-
ware configuration of said second tier.

5. The non-transitory computer-readable storage medium
of claim 1, further comprising:

analyzing metadata associated with each of the plurality of

containers to determine whether the metadata of each of
the plurality of containers has been corrupted and mark-
ing each of the plurality of containers that has been
determined to have corrupted metadata as the set of said
containers.

6. The non-transitory computer-readable storage medium
of claim 5, wherein the metadata associated with each of the
plurality of containers includes a free block list and the inode
list.

7. A computer system comprising:

a processor; and

memory coupled to said processor and having stored

therein instructions that, when executed by said com-

puter system, cause said computer system to execute

operations comprising:

accessing a file system comprising a plurality of logical
devices, wherein said file system comprises a multi-
tier file system that includes a first tier having a first
hardware configuration and a second tier having a
second hardware configuration different from the first
hardware configuration, the second hardware con-
figuration having a performance different from the
first hardware configuration;

subdividing said logical devices into a plurality of con-
tainers, wherein each of said containers comprises
one or more of said logical devices and wherein each
of said logical devices is associated with a single one
of said containers, wherein an amount of memory
allocated to one of a first container and a second
container is increased when more memory is needed
for afile associated with the one of said first container
and said second container, wherein the first container
includes a logical device entirely arranged in the first
tier and the second container includes logical devices
spanning the first tier and the second tier, and wherein
the file is entirely within the first container or the
second container and mapped to a plurality of logical
devices within the first container or the second con-
tainer;

selecting a set of said containers for a file system con-
sistency check;

performing said file system consistency check on only
said set of said containers such that a remainder of
containers within the file system are not checked
before subsequently performing another file system
consistency check on another set of said containers,
wherein said set of containers is offline and inacces-
sible to applications and said remainder of containers
is online and accessible to applications during said file
system consistency check, and wherein said file sys-
tem consistency check comprises reading and check-
ing a list of inodes, reading a block map associated

20

25

40

45

16

with each inode in said list of inodes, generating an
inode list for each container within said set of con-
tainers, and constraining said file system consistency
check to inodes associated with said set of containers,
wherein a plurality of operations are performed dur-
ing said file system consistency check, the plurality of
operations including a check of file names associated
with each of the containers within the set of contain-
ers, a check of inodes associated with each of the
containers within the set of containers, a check of
back pointers associated with the inodes, and a deter-
mination of a number of free inodes, and wherein one
of a plurality of corrective measures are performed
when an error is detected during one of the plurality of
operations, the corrective measure performed
depending upon the error detected; and
dynamically reducing said amount of memory allocated
to the one of said first container and said second
container when a measure of free memory in the one
of said first container and said second container
exceeds a threshold amount due to file activity within
the one of said first container and said second con-
tainer, wherein said dynamically reducing comprises
reorganizing free blocks in the one of said first con-
tainer and said second container to an end of the one of
said first container and said second container to
remove gaps between blocks in said container that are
in use.
8. The computer system of claim 7, wherein said logical
devices are virtual storage devices selected from a group
comprising: volumes and devices identified by LUNs (logical
unit numbers).
9. The computer system of claim 7, said operations further
comprising:
allocating, to said file, a free portion of said memory allo-
cated to the one of said first container and said second
container when said file increases in size; and

increasing said amount of memory allocated to said first
container or said second container when said free por-
tion is insufficient.

10. The computer system of claim 7, said operations further
comprising:

identifying inodes associated with each of said containers;

and

constraining said file system consistency check to a set of

said inodes associated with said set of said containers.

11. A computer-implemented method comprising:

accessing a file system comprising a plurality of logical

devices, wherein said file system comprises a multi-tier
file system that includes a first tier having a first hard-
ware configuration and a second tier having a second
hardware configuration different from the first hardware
configuration, the second hardware configuration hav-
ing a performance different from the first hardware con-
figuration, wherein said file system is subdivided into a
plurality of containers, wherein said containers com-
prise respective non-overlapping sets of said logical
devices, wherein an amount of memory allocated to each
container is dynamic, wherein said logical devices com-
prise devices identified by LUNSs (logical unit numbers),
wherein said LUNSs are used to define members of said
containers, and wherein a first of the plurality of con-
tainers includes a logical device entirely arranged in the
first tier and a second of the plurality of containers
includes logical devices spanning the first tier and the
second tier;

US 9,223,788 B2

17

dynamically reducing an amount of memory allocated to
one of said containers when a measure of free memory in
said one container exceeds a threshold amount due to file
activity within said one container, wherein the dynami-

18

system consistency check, the plurality of operations
including a check of file names associated with each of
the containers within the set of containers, a check of
inodes associated with each of the containers within the

cally reducing comprises reorganizing free blocks of 5
said one container to an end of said one container;

selecting a set of said containers for a file system consis-
tency check; and

completing said file system consistency check on only said
set such that a remainder of containers within the file 10
system are not checked before subsequently performing
another file system consistency check on another set of
said containers, wherein said set of containers is offline
and inaccessible to applications and said remainder of
containers is online and accessible to applications dur- 15
ing said file system consistency check, wherein said file
system consistency check comprises reading and check-
ing a list of inodes, reading a block map associated with
each inode in said list of inodes, generating an inode list
for each container within said set of containers, and 20
constraining said file system consistency check to
inodes associated with said set of containers, wherein a
plurality of operations are performed during said file L

set of containers, a check of back pointers associated
with the inodes, and a determination of a number of free
inodes, and wherein one of a plurality of corrective
measures are performed when an error is detected during
one of the plurality of operations, the corrective measure
performed depending upon the error detected.

12. The method of claim 11, further comprising:

creating a file entirely within one of the first container and
the second container, wherein the file is mapped to a
plurality of logical devices within the first container or
the second container;

allocating, to said file, a free portion of said memory allo-
cated to the one of said first container and said second
container when said file increases in size; and

increasing said amount of memory allocated to the one of
said first container and said second container when said
free portion is insufficient.

